You must complete Surds to unlock this Lesson.

# MATRICES AND DETERMINANTS

CONTENT

• Multiplication of Matrices
• Transpose of a Matrix
• Determinant of 2 × 2 and 3 × 3 Matrices
• Application to Solving Simultaneous Linear Equations in Two Variables

## Multiplication of Matrices

Let A and B be matrices. The product matrix AB exists if the number of columns of matrix A is the same as the number of the rows of matrixes B. A is then premultiplied by B. Where AB exists we say matrices A and B are conformable. In general matrices A of order m × n will premultiply matrix B of order n × p to give matrix C of order m  p. Notice the ns drop out.

Example 2:

Let A = $$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3\end{pmatrix}$$ and B = $$\begin{pmatrix} 2 & 1\\ 0 & -2 \\ 3 & -1\end{pmatrix}$$

AB = $$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3\end{pmatrix}$$ $$\begin{pmatrix} 2 & 1\\ 0 & -2 \\ 3 & -1\end{pmatrix}$$

= $$\begin{pmatrix} 1×2 &+ & 2×0 &+ & -1×3 \qquad 1×1 &+& 2×-2 &+& -1×-1\\ 0×2 &+ & 1×0 &+ & 3×3 \qquad 0×1 &+& 1×-2 &+& 3×-1\end{pmatrix}$$ = $$\begin{pmatrix} -1 & -2\\ 9 & -5\end{pmatrix}$$

But BA = $$\begin{pmatrix} 2 & 1\\ 0 & -2 \\ 3 & -1\end{pmatrix}$$ $$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3\end{pmatrix}$$

= $$\begin{pmatrix} 2×1 &+ & 1×0 \qquad 2 × 2 &+ & 1×1 \qquad 2×-1 &+& 1×3\\ 0×1 &+ & -2(0) \qquad 0×2 &+ & -2×1 \qquad 0×-1 &+& -2×3\\ 3×1 &+ & 0×-1 \qquad 3×2 &+ & -1×1 \qquad 3×-1 &+& -1×3\end{pmatrix}$$ = $$\begin{pmatrix} 2 & 5 & 1\\ 0 & -2 & -6\\ 3 & 5 &-6\end{pmatrix}$$

In general, matrix multiplication is not commutative as AB ≠ BA.

Lesson tags: General Mathematics Lesson Notes, General Mathematics Objective Questions, SS3 General Mathematics, SS3 General Mathematics Evaluation Questions, SS3 General Mathematics Evaluation Questions First Term, SS3 General Mathematics First Term, SS3 General Mathematics Objective Questions, SS3 General Mathematics Objective Questions First Term
Back to: GENERAL MATHEMATICS – SS3 > First Term