# WHOLE NUMBERS

CONTENT

- Whole Numbers in Standard Form
- Decimal Numbers in Standard Form
- Changing from Standard Form to Ordinary Numbers
- Indices

## Whole Numbers in Standard Form

**A number is said to be in standard form if it is expressed in the form of **\(A × 10^n\). Where \(1< A < 10\) and \(n\) is an integer (positive or negative whole numbers). Standard form is very useful in the field of sciences and social sciences for easy presentations and analysis. Examples of numbers in standard form include \(4 × 10^9\), \(5.8 × 10^2\), \(5.62 × 10^4\), etc.

**Examples: **

1. Write the following in standard form:

(a) \(90 \text{ } 000 \text{ } 000\)

(b) \(6 \text{ } 000 \text{ } 000 \text{ } 000 \text{ } 000 \text{ } 000 \text{ } 000\)

(c) \(34256.189\)

(d) \(879.45\)

**Solutions:**

(a) \(90 \text{ } 000 \text{ } 000 = 9 × 10 \text{ } 000 \text{ } 000\)

\(= 9 × 10 × 10 × 10 × 10 × 10 × 10 × 10\)

\(= 9 × 10^7\)

(b) \(6 × 1000 \text{ } 000 \text{ } 000 \text{ } 000 \text{ } 000 \text{ } 000\)

\(= 10 × 10 × 10 × 10 × 10 × 10 × 10\) \(× 10 × 10 × 10 × 10 × 10 × 10 × 10\) \(× 10 × 10 × 10 × 10\)

\(= 6 × 10^{18}\)

(c) \(34256.189 = 3.4256189 × 10 \text{ } 000\)

\(= 3.4256189 × 10^4\)

(d) \(879.45 = 8.7945 × 100\)

\(= 8.7945 10 × 10\)

\(= 8.7945 × 10^2\)

2.

- NEW:
**Download**the entire term's content in**MS Word**document format (1-year plan only) - The complete lesson note and evaluation questions for this topic
- The complete lessons for the subject and class (First Term, Second Term & Third Term)
- Media-rich, interactive and gamified content
- End-of-lesson objective questions with detailed explanations to force mastery of content
- Simulated termly preparatory examination questions
- Discussion boards on all lessons and subjects
- Guaranteed learning